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Chain sequences are positive sequences [an] of the form an= gn(1& gn&1) for a
nonnegative sequence [gn]. This concept was introduced by Wall in connection
with continued fractions. In his monograph on orthogonal polynomials, Chihara
conjectured that if an� 1

4 for each n then � (an& 1
4)� 1

4 . We prove this conjecture
and give other precise estimates for an . We also characterize the chain sequences
[an] whose terms are greater than 1

4 . We show connections to Jacobi matrices and
orthogonal polynomials. In particular, we characterize the maximal chain sequences
in terms of integrability properties of the spectral measure of the associated Jacobi
matrix. � 1998 Academic Press
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1. INTRODUCTION

The concept of chain sequences was introduced by Wall [7] in his
monograph on continued fractions. Chain sequences are sequences [an]�

n=1

for which there exists a sequence [gn]�
n=0 such that 0� gn�1 and

an= gn(1& gn&1), for n�1.

The sequence [gn] is called a parameter sequence and need not be unique.
The connection to continued fractions is that a nonnegative sequence

[an] is a chain sequence if and only if the approximants of the continued
fraction

1|
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&
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|1

&
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are positive and converge to a limit. We refer to [2, 7] for basic facts about
chain sequences.

The constant sequence an= 1
4 is one of the simplest examples of a chain

sequence. The constant 1
4 cannot be enlarged and moreover if an� 1

4 and
[an] is a chain sequence then an � 1

4 . In [2, Theorem III.5.8] Chihara
showed that if [an] is a chain sequence such that an� 1

4 then

:
�

n=1

(an& 1
4)� 3

8 .

In [2, Exercise III.5.6] he replaced 3
8 with (1+- 2)�8 and conjectured that

1
4 is sufficient. We show that this conjecture is correct. We also show that
one has

:
�

n=N \an&
1
4+�

1
4N

,

and we determine when the equality holds.
Chain sequences have important applications to orthogonal polynomials

(see [2]). Let pn be symmetric orthogonal polynomials on the interval
[&1, 1] relative to a probability measure + and satisfying the recurrence
relation

xpn(x)=*n+1 pn+1(x)+*npn&1(x), n�1, (1)

with initial conditions p0(x)=1 and p1(x)=*1�x. It can be shown that the
support of + is contained in [&1, 1] if and only if [*2

n] is a chain
sequence. The constant sequence *n= 1

2 corresponds to the Chebyshev
polynomials of the second kind. Their orthogonality measure d+(x)=
(2�?)(1&x2)1�2 dx is supported in [&1, 1]. When *n� 1

2 the orthogonality
interval can be larger than [&1, 1]. The question arises: by how much can
*n exceed 1

2 so that the orthogonality measure is still supported in the
interval [&1, 1]? This question is connected with estimating the norms
or spectral radii of the Jacobi matrix associated with (1), because the
orthogonality measure is supported in [&1, 1] if and only if the spectral
radius of the Jacobi matrix is less than or equal to 1. All this can readily
be solved by means of chain sequences. We give necessary and sufficient
conditions for sequences *n� 1

2 such that supp +/[&1, 1]. These condi-
tions are useful in constructing such sequences.

We also discuss maximal sequences *n with the property that the Jacobi
matrix associated with *n has a spectral radius equal to 1 and each Jacobi
matrix associated with *� n�*n has a spectral radius equal to 1 if and only
if *� n=*n for each n. We show that a sequence *n>0 is maximal if and only
if the series � m2n is divergent, where mn are the moments of the
orthogonality measure associated with J.
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The origin of our interest in polynomials pn orthogonal on the interval
[&1, 1] and such that *n� 1

2 comes from the nonnegative linearization
problem. If we express the product pn(x) pm(x) in terms of pk(x) we get the
linearization formula

pn(x) pm(x)= :
n+m

k=|n&m|

c(n, m, k) pk(x).

By [6, Prop. 1] we get that c(n, m, k) are nonnegative for all n, m, k�0
provided that *n� 1

2 and supp +/[&1, 1] (see also [5, Theorem 3]).

2. JACOBI MATRICES AND CHAIN SEQUENCES

A given sequence of real numbers *n determines a Jacobi matrix J as
follows:

0 *1 0 0 } } }

*1 0 *2 0 } } }

J=\ 0 *2 0 *3
. . .+ . (2)

0 0 *3 0
. . .

b b . . .
. . .

. . .

The connection between Jacobi matrices and chain sequences is exhibited
in the next proposition.

Proposition 1. The Jacobi matrix J corresponds to a bounded linear
operator on square summable real valued sequences, with operator norm less
than or equal to 1 if and only if *2

n is a chain sequence.

Proof. Since J is a symmetric matrix we have

&J&l2 � l2=sup[xTJx | xTx�1].

On the other hand,

xTJx=2 :
�

n=1

*nxn xn+1 .

Now the conclusion follows from [7, Theorem 20.1] (see also [2, Exer-
cise III.5 13]). K
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3. ESTIMATES FOR CHAIN SEQUENCES

The next two lemmas are known. We prove them in order to remain self-
contained. Note that the proof of Lemma 2 is entirely different from the
one in [2, p. 99].

Lemma 1 (Wall [7]). Let an be a chain sequence with a parameter
sequence gn . If an� 1

4 the sequence gn is increasing and it tends to 1
2 . In par-

ticular, an tends to 1
4 .

Proof. We have

gn=
an

1& gn&1

�
1

4(1& gn&1)
� gn&1 .

Thus gn Zg and an � g(1& g)� 1
4 . Hence g= 1

2.

Lemma 2 ([2], p. 99). Let an� 1
4 be a chain sequence with a parameter

sequence gn . Then

0�
1
2

& gn�
1

2(n+1)
.

Proof. Let

$n=1&2gn .

In view of the preceding lemma we have 0�$n�1 and

$n=
$n&1&(4an&1)

1+$n&1

�
$n&1

1+$n&1

.

Hence

$n� f ($n&1), where f (x)=
x

x+1
.

Therefore

$n� f b f b } } } b f

n times

($0)=
$0

n$0+1
�

1
n+1

.

This gives the conclusion. K
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Theorem 1. Let an�1�4 be a chain sequence. Then

:
�

m=n \am&
1
4+�

1
4n

, n�1. (3)

If for some n�1 equality holds in (3) then am=1�4 for m>n and
an=1�4+1�4n.

In particular

:
�

n=1
\an&

1
4+�

1
4

(4)

and the equality holds if and only if a1=1�2 and an=1�4 for n�2.

Proof. Let gn be any parameter sequence for an . By Lemma 1 we have
gn� 1

2. Therefore

an& 1
4= gn(1& gn&1)& 1

4

= 1
2(gn& gn&1)&( 1

2& gn&1)( 1
2& gn)� 1

2 (gn& gn&1).

Next, adding up the terms and using Lemma 2 gives

:
�

m=n \am&
1
4+�

1
2 \

1
2

& gn&1+�
1
4n

.

This equality holds if and only if

( 1
2& gm&1)( 1

2& gm)=0 for m�n

and gn&1=1�2&1�2n. Since by Lemma 1 the sequence gn is nondecreasing
we get gm=1�2 for m�n. Therefore

an= gn(1&gn&1)=
1
2 \

1
2

+
1

2n+=
1
4

+
1

4n
,

am= gm(1& gm&1)=
1
4

for m>n. K

Theorem 2. Let an be a chain sequence such that an z1
4 . Then

0�an&
1
4

�
1
4 \tan

?
2(n+1)+

2

. (5)

Proof. We will make use of the following lemma.
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Lemma 3. Let

f (x)=
x&=2

x+1
, ==tan ..

Then denoting by f m the mth iterate of f we have

f m(x)=
x&= tan m.

(=&1 tan m.)x+1
.

In particular

f m(1)=
tan .

tan(m+1).
.

Lemma 3 can be proved by induction using the relation between
tan(m+1). and tan m.. The more demanding reader may instead con-
sider the corresponding 2_2 matrix

F=\1
1

&=2

1 + .

Its iterates can be computed by finding a basis of eigenvectors for F.
Assume that

an= 1
4+ 1

4=2
n and =nz0.

Let gn be a parameter sequence for an . Write gn in the form

gn= 1
2 (1&$n).

By Lemma 1 we have 0�$n�1. Then using an= gn(1& gn&1) and =m�=n

gives

$m=
$m&1&=2

m

$m&1+1
�

$m&1&=2
n

$m&1+1
, m�n.

Thus

$m� f ($m&1), where f (x)=
x&=2

n

x+1
, for m�n.

Since f (x) is an increasing function for x�0, by Lemma 3 we obtain

$m� f m($0)� f m(1)=
tan .

tan(m+1).
(6)
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for m�n, where =n=tan .. This implies that tan(m+1).�0 for m�n.
Hence (n+1).�?�2. Thus

=n=tan .�tan
?

2(n+1)
. K

Using tan x�4x�?, for 0�x<?�4, gives

Corollary 1. Let an be a chain sequence such that anz1
4 . Then

an&
1
4

�
1

(n+1)2 .

The next theorem gives a characterization of the chain sequences with all
terms greater than or equal to 1

4 . In view of Proposition 1 the constant
chain sequence an= 1

4 corresponds to the Jacobi matrix with *n= 1
2 , which

is in turn associated with the Chebyshev polynomials of the second kind

Un(cos x)=
sin(n+1)x

sin x
.

Theorem 3. Let an= 1
4 (1+=n), with =n�0. Then [an] is a chain

sequence if and only if there exists a sequence [cn] of positive numbers such
that

(i) cn+1�2cn , for n�1.

(ii) cn+1&cn� :
�

m=n

cm=m , for n�1.

Proof. (O) Let an= gn(1& gn&1) and gn= 1
2 (1&$n). Then

=n=$n&1&$n&$n&1 $n .

Set c1=1 and

cn+1

cn
=1+$n&1.

Then cn+1�2cn , because $n�1. We have

cn+1&cn=cn $n&1. (7)

Moreover

=n=$n&1&$n(1+$n&1)=$n&1&
cn+1

cn
$n .
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Hence

cn=n=cn $n&1&cn+1 $n . (8)

Thus the sequence cn $n&1 is nonincreasing; as such it has a limit
cn $n&1 � s�0.

Now summing up (8) and using (7) yields

:
�

m=n

cm=m=cn $n&1&s=cn+1&cn&s�cn+1&cn .

(o)
Set

$n=c&1
n+1 :

�

m=n+1

cm=m .

Then

$n�
cn+2

cn+1

&1.

Thus $n�1. Let hn= 1
2(1&$n). Then

4hn(1&hn&1)=(1&$n)(1+$n&1)=1+=n+
cn+1&cn

cn
$n&$n&1 $n

�1+=n+
1
cn \ :

�

m=n

cm=m+ $n&$n&1 $n

=1+=n=4an .

Thus hn(1&hn&1)�an . This implies that an is a chain sequence (see also
[2, Theorem 5.7, p. 97]). K

The next Corollary can be found in [2, Problem 5.7, p. 100]

Corollary 2 (Chihara). Let an= 1
4 (1+=n), where =n�0 and

:
�

m=1

m=m�1.

Then [an] is a chain sequence.
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Proof. Apply Theorem 3 with cn=n. K

Corollary 3. Let [cn] be a concave nondecreasing sequence of positive
numbers satisfying 2cn�cn+1 for n�1. Set

=n=
2cn+1&cn&cn+2

cn
.

Then the sequence an= 1
4 (1+=n) is a chain sequence.

Proof. We have cn+1&cnzs�0. Thus

:
�

m=n

=mcm=cn+1&cn&s�cn+1&cn . K

4. MAXIMAL CHAIN SEQUENCES

A chain sequence [an] is called maximal if there is no chain sequence
[bn] such that bn�an and [an]{[bn].

Maximal chain sequences exist and moreover every chain sequence is
bounded from above by a maximal one (see [7]).

The next proposition follows in part from Proposition 1.

Proposition 2. Let [an] and [bn] be chain sequences. Then the
sequence [cn] defined by

- cn =* - an +(1&*) - bn

is a chain sequence for any 0<*<1. Moreover if [an]{[bn] then [cn] is
not a maximal chain sequence.

Proof. Let an= gn(1& gn&1) and bn=hn(1&hn&1) for 0� gn�1 and
0�hn�1. Set fn=*gn+(1&*) hn . Then

fn(1& fn&1)=[*gn+(1&*) hn][(1&*)(1&hn&1)+*(1& gn&1)]

=*(1&*)[gn(1&hn&1)+hn(1& gn&1)]+*2an+(1&*)2 bn

�2*(1&*) - gn(1& gn&1) hn(1&hn&1)+*2an+(1&*)2 bn

=(* - an +(1&*) - bn )2=cn .

Hence cn is a chain sequence as it is bounded from above by the chain
sequence fn(1& fn&1).
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If [cn] is a maximal chain sequence then both [an] and [bn] are maxi-
mal chain sequences. In that case g0=h0=0, because otherwise setting
g0=0 or h0=0 leads to chain sequences which are greater than [an] or
[bn], respectively.

Also, if [cn] is a maximal chain sequence, the calculations performed
above enforce

cn= fn(1& fn&1),

gn(1&hn&1)=hn(1& gn&1), n�1.

Since g0=h0=0, the last equation implies gn=hn for n�0. Hence an=bn

for n�1. K

We now turn to chain sequences such that an� 1
4.

Theorem 4. Let an= 1
4 (1+=n), where =�0. Then [an] is a maximal

chain sequence if and only if there exists a unique sequence [cn] of positive
numbers such that c1=1 and

(i) 2cn�cn+1 , for n�1.

(ii) cn+1&cn� :
�

m=n

cm=m , for n�1.

Proof. Let [an] be a maximal chain sequence. By Theorem 3 a
sequence [cn] exists. Let gn be a unique parameter sequence for [an]. Set
gn= 1

2 (1&$n). Analyzing the second part of the proof of Theorem 3 we get

cn+1&cn= :
�

m=n

cm=m=cn $n&1, n�1.

Since c1=1 and $n is uniquely determined by gn we conclude that cn is also
uniquely determined.

Assume [an] is not maximal. By [7] it has two different parameter
sequences. Hence there exist [gn] and [hn] such that

an= gn(1& gn&1)=hn(1&hn&1), n�1,

and g0<h0 . Define cn and dn by c1=d1=1 and cn+1=2(1& gn&1) cn and
dn+1=2(1&hn&1) dn . This leads to two different sequences satisfying
Theorem 3. K

Definition 1. The Jacobi matrix associated with the sequence [*n]
will be called maximal if &J&�1 and for each Jacobi matrix J$ associated
with the sequence [*$n]{[*n] such that |*n |�|*$n | we have &J$&>1.
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In view of Proposition 1 J is a maximal Jacobi matrix if and only if [*2
n]

is a maximal parameter sequence. By [7] a sequence [an] is a maximal
chain sequence if and only if the continued fraction

1|
|1

&
a1 |
|1

&
a2 |
|1

&
a3 |
|1

& } } }

tends to 0.
Favard's Theorem states that for each Jacobi matrix of the form (2)

there exists a probability measure + symmetric about the origin,
supp +/[&&J&, &J&], such that it is the orthogonality measure for the
polynomials pn given recursively by (1).

The next theorem collects facts that can be deduced from [7] and
[1, Theorem 1]. Our setting is a bit different, so we provide a short inde-
pendent proof.

Theorem 5. Let J be a Jacobi matrix associated with the sequence [*n].
Assume that &J&�1 and that + is the associated orthogonality measure. The
following conditions are equivalent.

(i) J is a maximal Jacobi matrix.

(ii) ��
n=0 m2n=+�, where mn=��

&� xn d+(x).

(iii) The continued fraction

1&
*2

1 |
|1

&
*2

2 |
|1

&
*2

3 |
|1

& } } }

tends to 0.

Proof. Assume J is not maximal. In view of Proposition 1 the sequence
an=*2

n is not a maximal chain sequence. Then there exists a chain sequence
[bn] such that an�bn and [an]{[bn]. Let [hn] be a parameter sequence
for [bn] and N be the smallest index such that aN<bN=hN(1&hN&1).
Set gN=hN and define gn recursively by an= gn(1& gn&1). Then it is
immediate that gn>hn for n<N and gn�hn for n>N. In particular we
have that g0>h0�0.

Let rn(x) be the polynomials defined recursively by

xrn(x)= gn&1 rn+1(x)+(1& gn&1) rn&1(x), n�1, (9)

69CHAIN SEQUENCES



File: DISTIL 310912 . By:DS . Date:15:12:97 . Time:08:07 LOP8M. V8.B. Page 01:01
Codes: 2269 Signs: 1033 . Length: 45 pic 0 pts, 190 mm

with initial conditions r0(x)=1, r1(x)=x. Thus rn(1)=1 and rn(&1)=
(&1)n. Hence rn+2(x)&rn(x) is divisible by x2&1. Consider the polyno-
mials qn(x) defined by

qn(x)=
rn+2(x)&rn(x)

x2&1
. (10)

Then by (9) we obtain

xqn(x)= gn+1 qn+1(x)+(1& gn&1) qn&1(x), n�1,

and q0(x)= g&1
0 , q1(x)=(g0g1)&1x. Set

pn(x)= g0 � g1g2 } } } gn

(1& g0)(1& g1) } } } (1& gn&1)
gn(x). (11)

Then the polynomials pn satisfy

xpn(x)=- gn+1(1& gn) pn+1(x)+- gn(1& gn&1) pn&1(x), n�1,

(12)

with p0(x)=1 and p1(x)=c&1x, where c=- g1(1& g0). Then taking into
account *2

n=an= gn(1& gn&1) implies

xpn(x)=*n+1 pn+1(x)+*n pn(x), n�1, (13)

with p0(x)=1 and p1(x)=*&1
1 x. Let & be a probability measure associated

with the polynomials rn , which exists by Favard's Theorem. Recall that by
(13) + is the orthogonality measure for the pns and it is supported in
[&1, 1]. By (10) and (11) the measures & and + are related by

d+(x)=c&1(1&x2) d&(x),

where c=�1
&1 (1&x2) d&(x). Thus

:
�

n=0

m2n=|
1

&1

d+(x)
1&x2<+�. (14)

This completes the proof of (ii) O (i).
Assume ��

n=0 m2n<+�. By (14) the measure

d&(x)=c&1 d+(x)
1&x2 , where c= :

�

n=0

m2n ,
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has total mass equal to 1 and its support is contained in [&1, 1]. Hence
the zeros of the corresponding orthogonal polynomials belong to (&1, 1).
Let rn be these polynomials normalized at x=1, i.e., rn(1)=1. There exists
a sequence [gn]�

n=0 such that g0>0 and

xrn(x)= gn&1 rn+1(x)+(1& gn&1) rn&1(x), n�1,

where r0(x)=1 and r1(x)=x. Define the polynomials qn and pn by (10)
and (11), respectively. Then by the relation between + and & the polyno-
mials pn are orthonormal relative to +. Hence combining (12) and (13)
gives

*2
n= gn(1& gn&1).

Since g0>0 the sequence [*2
n] is not a maximal chain sequence, which in

turn implies that J is not a maximal Jacobi matrix. This shows (i) O (ii).
The equivalence (ii) � (iii) follows from the formula

|
1

&1

d+(x)
y&x

=
1|
| y

&
*2

1 |
| y

&
*2

2 |
| y

& } } } , (15)

(see [3, p. 46]) and the fact that since the measure + is symmetric about
x=0

|
1

&1

d+(x)
1&x2=|

1

&1

d+(x)
1&x

.

The formula (15) holds for y � [&1, 1]. We get the desired result by taking
the limit when y � 1+. K

5. MAXIMAL PARAMETER SEQUENCES

Wall [7] observed that a chain sequence [an] is maximal if and only if
it admits a unique parameter sequence. Other chain sequences admit more
parameter sequences. Among them there exists a maximal parameter
sequence (see [7, Theorem 19.2; 2, Theorem III.5.3]). Wall proved that
maximal parameter sequences are exactly those sequences [gn] for which

:
�

n=1

g1 g2 } } } gn

(1& g1)(1& g2) } } } (1& gn)
=+�. (16)

(see [7, (19.10), p. 82; 2, Theorem III.6.1]). For chain sequences [an], with
terms greater than 1

4 we have the following.
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Proposition 3. Let [an] be a chain sequence such that an� 1
4 for n�1.

Let [an] be a parameter sequence and set gn= 1
2 (1&$n). Then [gn] is the

maximal parameter sequence if and only if

:
�

n=1

exp \&2 :
n

k=1

$k+=�.

Proof. Observe that

g1g2 } } } gn

(1& g1)(1& g2) } } } (1& gn)
=

(1&$2
1)(1&$2

2) } } } (1&$2
n)

(1+$1)2 (1+$2)2 } } } (1+$n)2 . (17)

By Lemma 2 we have $n�1�(n+1). Thus

n+1
2n

�(1&$2
1)(1&$2

2) } } } (1&$2
n)�1. (18)

Again by using Lemma 2 and the fact that the function x [ ex�(1+x) is
increasing we obtain

1�
e$1

1+$1

e$2

1+$2

} } }
e$n

1+$n

�
exp(1+ 1

2+ } } } + 1
n)

(1+ 1
2)(1+ 1

3) } } } (1+ 1
n)

=
2

n+1
exp \1+

1
2

+ } } } +
1
n+�2. (19)

Combining (17), (18), and (19) gives the conclusion. K

Corollary 4. Using the notation of Proposition 3, if

:
�

n=1

$n<+�

then the sequence gn= 1
2 (1&$n) is the maximal parameter sequence.

REFERENCES

1. T. Chihara, Chain sequences and orthogonal polynomials, Trans. Amer. Math. Soc. 104
(1962 ), 1�16.

2. T. Chihara, ``An Introduction to Orthogonal Polynomials, Mathematics and Its Applica-
tions,'' Vol. 13, Gordon 6 Breach, New York, 1978.

3. J. A. Shohat and J. D. Tamarkin, ``The Problem of Moments, Mathematical Surveys,''
Vol. 1, Amer. Math. Soc., Providence, RI, 1943.

72 RYSZARD SZWARC



File: DISTIL 310915 . By:DS . Date:15:12:97 . Time:08:07 LOP8M. V8.B. Page 01:01
Codes: 1467 Signs: 447 . Length: 45 pic 0 pts, 190 mm

4. R. Szwarc, Chain sequences and compact perturbations of orthogonal polynomials, Math.
Z. 217 (1994), 57�71.

5. R. Szwarc, Nonnegative linearization of orthogonal polynomials, Colloq. Math. 69 (1995),
309�316.

6. R. Szwarc, Nonnegative linearization of associated q-ultraspherical polynomials, Methods
Appl. Anal. 2 (1996), 399�407.

7. H. S. Wall, ``Analytic Theory of Continued Fractions,'' Nostrand, New York, 1948.

73CHAIN SEQUENCES


